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Abstract We give an alternate proof of the existence of the asymptotic expansion of
the Bergman kernel associated with the kth tensor powers of a positive line bundle L in
a 1√

k
-neighborhood of the diagonal using elementary methods.We use the observation

that after rescaling the Kähler potential kϕ in a 1√
k
-neighborhood of a given point, the

potential becomes an asymptotic perturbation of the Bargmann–Fock metric. We then
prove that the Bergman kernel is also an asymptotic perturbation of the Bargmann–
Fock Bergman kernel.

Keywords Bergman kernel · Bargmann–Fock space ·Asymptotic expansion ·Kahler
manifolds
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1 Introduction

Let (L , h) → (Mn, ω) be a positive Hermitian holomorphic line bundle over a com-
pact complex manifold. The hermitian metric h induces a Kähler form ω on M
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ω := −
√−1
2π ∂∂̄ log(h).

Let H0(M, L) denote the space of holomorphic global sections of L , which is a closed
subspace of L2(M, L), the space of all square integrable sections of L over M . The
L2-inner product of f, g ∈ H0(M, L) is defined by

〈 f, g〉L2 :=
∫
M

( f, g)h
ωn

n! .

The Bergman projection is the orthogonal projection PH0 : L2(M, L) → H0(M, L).
The Bergman kernel K , a section of L � L̄ on M × M , is the operator kernel of PH0

with respect to the above inner product. Here � is the external tensor product where
the fiber over (x, y) ∈ M × M is Lx ⊗ Ly .

The Bergman kernel has the following (global) reproducing property: given a holo-
morphic section f ∈ H0(M, L) we have

f (x) = 〈 f (y), K (y, x)〉L2 .

Given x0 ∈ M , a sufficiently small neighborhood Ux0 admits a local trivialization of
L with frame eL on Ux0 . We define the local Kähler potential ϕ by

h(eL , eL) = e−ϕ.

Bochner coordinates (introduced in [5]) are special coordinates in which the local
Kähler potential ϕ admits the form

ϕ(z) = |z|2 + R(z), R(z) = O(|z|4). (1.1)

Here R(z) is defined to be the remainder portion of potential in the expansion under
Bochner coordinates. There always exists a neighborhood of p which admits Bochner
coordinates for Kähler manifolds (cf. [26]). Note the above definitions are naturally
extended to (L⊗k, hk) and we denote the corresponding Bergman kernel by Kk . In
this setting, the frame of L⊗k onUx0 is given by e

⊗k
L , the k-tensor product of the frame

eL . We shall consider only Kk for the remainder of the paper and will henceforth drop
the k subscript.

The purpose of this paper is to provide an alternate proof to the following theorem:

Theorem 1.1 ([8,27,30])The scaled Bergman kernel admits the following asymptotic
expansion in the Bochner coordinates and in the frame e⊗k

L (x) ⊗ e⊗k
L (y),

K
(

u√
k
, v√

k

)
∼ kneu·v

⎛
⎝1 +

∞∑
j=2

c j (u,v̄)√
k j

⎞
⎠ , |u|, |v| ≤ 1.

More precisely, for any N, the following inequality holds:

∥∥∥∥∥∥K
(

u√
k
, v√

k

)
− kneu·v

⎛
⎝1 +

N∑
j=2

c j (u,v̄)√
k j

⎞
⎠
∥∥∥∥∥∥
Cm

≤ CN ,mk
n− N+1−m

2 ,
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2604 H. Hezari et al.

where the Cm norm corresponds to the x0, u, v variables, and with respect to a fixed
Bochner coordinate in a smooth family of Bochner coordinates centered at x0.
Here each c j (u, v̄) is a polynomial of the form

∑
p,q c

p,q
j (x0)u p v̄q satisfying

{
cp,qj (x0) = 0 for p + q > 2 j,

cp,qj (x0) = 0 for p + q �= j mod 2.

In particular, by setting u = v = 0, this verifies the on-diagonal expansions of Zelditch
[30] and Catlin [8].

The primary objective of this paper is to provide a direct proof of Theorem 1.1. The
uniqueness of our approach is that it uses straightforward computational techniques
and requires little advanced construction. The only advanced tool we use is Hörmander
L2-estimates.

Methods to compute and analyze the coefficients of the Bergman kernel have been
worked out over the last twenty-five years. Initially Tian proved leading asymptotics on
the diagonal using the method of peak sections [28]. A complete expansion was given
independently byZelditch [30] andCatlin [8] by usingBoutet deMonvel and Sjöstrand
parametrix [7]. The near-diagonal expansion of K (x, y) (i.e., dist(x, y) < 1/

√
k) is

deduced from the diagonal expansion by Taylor expansion (see [27] for the more
general case of symplectic manifolds). The near-diagonal asymptotic expansions are
of the form (with bl(x, y) certain hermitian functions; bl(x, y) = bl(y, x)),

K (x, y) = knekψ(x,y)

(
1 +

∞∑
l=1

bl(x, y)

kl

)
, dist(x, y) <

1√
k
, (1.2)

where ψ(x, y) is an almost holomorphic extension of ϕ. In particular, when ϕ is real
analytic, ψ is simply the polarization of ϕ, i.e., ψ(x, y) is holomorphic in x and y,
andψ(x, y)|y=x = ϕ(x). It is clear that this expansion implies the one in Theorem 1.1
by Taylor expansion. Lu demonstrated that the functions bl(x, x) are polynomials of
covariant derivatives of the curvature of the underlying manifold M and computed
the first four terms [19]. The off-diagonal terms c j (u, v) were studied by Lu and
Shiffman [21] using Taylor expansions of bl(x, x). A graph theoretic interpretation
of the coefficients is given in [29]. Berman et al. [1] give an alternate approach to
prove (1.2), which we will discuss further in the following section. Related work on
the Bergman kernel on compact complex manifolds can be found in [6], [14], [17],
[20], [22]. The Bergman kernel on compact symplectic manifolds has been studied in
[9],[23],[24],[25]. Applications of the Bergman kernel and the closely related Szegő
kernel can be found in [2], [4], [10], [11], [15], [16].

1.1 Outline of the Paper

Our proof of Theorem 1.1 is subdivided into two components: construction and analy-
sis of a local reproducing kernel using perturbation methods on the reproducing kernel
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of the Bargmann–Fock space (Sects. 2, 3), and demonstration of this construction in
fact being (asymptotically) the global reproducing kernel (Sect. 4). As in [1], ini-
tially the asymptotic formula is formally computed and then remainder estimates are
addressed. However, our local method of computation is distinct; while [1] gives an
approach using microlocal analysis techniques inspired by the calculus of Fourier
integral operators with complex phase developed by Sjöstrand, we use standard inte-
gration and combinatorial identities on C

n to calculate the coefficients that would
satisfy the reproducing property. The proof relating the local reproducing kernel to the
global Bergman kernel is essentially the same as [1] and is included for completeness.
We also explicitly compute the first two nontrivial coefficients of the near-diagonal
expansion in Sect. 6. We define the local reproducing kernel modulo k−(N+1)/2 onUx0
to be a function QN (x, y) on Ux0 ×Ux0 which is holomorphic in x , antiholomorphic
in y, and which satisfies the following local reproducing property (modulo k−(N+1)/2)

f (x) = 〈χk(y) f (y), QN (y, x)〉L2(Ux ,kϕ)

+ O

(
kn− N+1

2

)
‖ f ‖L2(Ux ,kϕ), f ∈ H0(Ux0),

where χk is a cutoff function supported in a scale ball of radius k−1/4−ε for some ε > 0
(see (3.2) for the precise definition). The choice of such an unusual cutoff function
with shrinking support plays an important role in our argument.

To construct the local reproducing kernel modulo k−(N+1)/2 at a point x0 ∈ M ,
we begin by choosing Bochner coordinates and a local trivialization of the bundle.
Our cutoff function χk is chosen to have shrinking support on B(k−1/4−ε), so that the
inner product is localized near the diagonal and also to ensure that the local rescaled
Kähler potential admits an asymptotic expansion of the form

ϕ
(

v√
k

)
:=
∣∣∣ v√

k

∣∣∣2
⎛
⎝1 +

∞∑
j=2

a j (v,v̄)√
k
j

⎞
⎠ .

This expression is an asymptotic perturbation of | v√
k
|2, hence we propose that the

local Bergman kernel admits an asymptotic expansion of the form

Kloc
(

u√
k
, v√

k

)
= kneuv̄

⎛
⎝1 +

∞∑
j=2

c j (u,v̄)√
k
j

⎞
⎠ , (1.3)

where the c j ’s depends on a j and satisfy c j (u, v̄) = c j (v, ū). The reason we propose
such an expansion is that if φ(x) = |x |2, then a j = 0 for all j ≥ 2 which implies
c j = 0 for all j ≥ 2 (5.6) yielding Kloc( u√

k
, v√

k
) = kneu·v , which is precisely the

rescale of the kernel of Bargmann–Fock metric k|x |2 (cf. Lemma 8.1).
In Sect. 2 we show the existence of the coefficients which will (formally) satisfy

the reproducing property on C
n under the perturbed metric. In Sect. 3 we show that

the local kernel proposed satisfies the local reproducing property through a series
of remainder estimates. In Sect. 4 we show the global Bergman kernel admits an
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2606 H. Hezari et al.

asymptotic expansion by comparing it to our local construction. The crux of the proof
is the application of standard Hörmander ∂-estimates (c.f. [3]) as it was done before
in [1].

With the proof of Theorem 1.1 complete, in Sect. 6 we then use the algorithm
generated within the argument to compute the coefficient c2 (the coefficients c0 and
c1 are computed in Lemmas 5.8 and 6.3 respectively), yielding the following result.

Proposition 1.2 (Coefficients of the expansion) One has⎧⎪⎨
⎪⎩
c0 = 1,

c1 = 0,

c2 = ρ
2 − 1

4

∑
i, j,k,l Rmi jkl(0)u

iukv jvl ,

whereRm denotes theRiemannian curvature tensor andρ denotes the scalar curvature
(cf. (1.4)). In particular, for u = v = 0 one obtains c2 = ρ

2 .

Remark 1.3 Our computation of the coefficients is independent of any previous results
on the coefficients of the Bergman kernel expansion on the diagonal. In fact, the
iterative computation implemented to compute these quantities captures the essential
strategy one may utilize to compute (if one feels so inclined) any desired c j .

1.2 Twisted Bundle Case

Let E → M be a Hermitian holomorphic vector bundle. Consider the twist E ⊗ L⊗k .
In this setting, the Bergman kernel, Kk,E (z, w), can be defined as in the introduction
and one can study the asymptotic expansion of this kernel as k → ∞. In fact our local
construction follows with the only difference being the volume form and the local to
global construction follows similarly by Hörmander ∂-estimates to extend our result
to the twisted bundle case.

1.3 Notation and Conventions

We now set the conventions which will be used throughout the paper. Let Z+ denote
the collection of all nonnegative integers. Let � ∈ N and let α, β ∈ Z

�+ such that
α := (α1, . . . , α�) and β := (β1, . . . , β�). Define

α! :=
�∏

i=1

αi !, |α| :=
�∑

i=1

αi .

A multiindex binomial coefficient is defined by the following
(

α

β

)
:=

�∏
i=1

(
αi

βi

)
.

Note we use the convention that if q > p then
(p
q

) := 0. Lastly,multiindex inequalities
will be defined as follows

α ≤ β ⇐⇒ αi ≤ βi for all i,
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and furthermore
α < β ⇐⇒ α ≤ β and α �= β.

For any summations if the ranges are not specified one will assume summation indices
range over multiindex values Z�+.

Given x ∈ M and r > 0 we set

Bx (r) := {y ∈ M : dist(y, x) < r} .

In Cn we set B(r) := B0(r) and B := B(1).
Given local holomorphic coordinates {zi }ni=1, the volume form is given by

dV :=
(√−1

2π

)n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n .

The components of the curvature tensor are given by

Rmi jkl := − ∂2gi j

∂zk∂z j
+
∑
s,t

gst
∂git
∂zk

∂gs j

∂zl
, (Riemannian curvature)

Rici j =
∑
k,l

gkl Ri jkl , (Ricci curvature)

ρ =
∑
i, j

gi j Rici j . (Scalar curvature)

(1.4)

Furthermore we set

�(z) := det

(
∂2

∂zi∂ z̄ j
ϕ(z)

)
.

Hence in local coordinates
ωn

n! = � dV .

We define the local weighted L2 spaces by

L2(Ux , kϕ) :=
{
f :
∫
Ux

| f (z)|2 e−kϕ(z) ω
n

n! < ∞
}

,

and we define its closed subspace of L2-holomorphic functions by H0(Ux , kϕ). The
Bargmann–Fock space F is precisely the space H0(Cn, |x |2). We refer the reader to
the Appendix for some facts about F .

Finally, we use the following 1√
k
-rescaling convention on the potential:

ϕk(v) := ϕ

(
v√
k

)
. (1.5)
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2608 H. Hezari et al.

2 Local Construction

2.1 Existence of Coefficients

Let ar,sm be the coefficients in the formal power series expansion of the product

e
−kR
(

v√
k

)
�
(

v√
k

)
=

∞∑
m=0

2m∑
r+s=0

ar,sm vrvs√
km

. (2.1)

where R(z) = ϕ(z) − |z|2 as defined in (1.1) under Bochner coordinates.

Proposition 2.1 (Existence of coefficients) There exist unique coefficients cp,qj ∈ C

depending only on the Kähler potential ϕ such that for any polynomial F and any
N ≥ 0,

F

(
u√
k

)
=
∫
Cn

F

(
v√
k

)
eu·v̄−|v|2

⎛
⎝ N∑

t=0

∑
m+ j=t

∑
p,q

∑
r,s

cp,qj ar,sm√
kt

u p v̄qvrvs

⎞
⎠ dV .

(2.2)
Furthermore, the coefficients cp,qj have the following finiteness and “parity property”
(cf. Definition 5.5)

(1) cp,qm = 0 when |p + q| > 2m,
(2) cp,qm = 0 when |p| + |q| �≡2 m.

Remark 2.2 When N = 0 the equation reduces to the reproducing property of the
Bargmann–Fock kernel. Also note that the expression in parenthesis is precisely the
truncation up to k−N/2 of the product

⎛
⎝ ∞∑

j=0

c j (u, v)√
k j

⎞
⎠ e−kR

(
v√
k

)
�
(

v√
k

)
.

The above proposition is one of the key results of the paper, though we defer
the proof until Sect. 5 as it is purely algebraic. But at the heart of the proof stands
Lemma 8.4 in the Appendix, which states that

∫
Cn

v̄ pvqeu·v̄−|v|2dV =
{
0 if p > q,

q!
(q−p)!u

q−p if p ≤ q.

In the following section we prove Proposition 3.1 using our key Proposition 2.1.
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3 Remainder Estimates

3.1 On the Choice of the Shrinking Radius

We begin by choosing a point p ∈ M and choosing some local neighborhood Ux

centered at p, which admits a local trivialization. We rescale coordinates via the
identifications {

x = p + u√
k
,

y = p + v√
k
.

We additionally use Bochner coordinates (cf. Proposition 6.1). Thus the potential
scales as follows:

kϕk(v) := kϕ( v√
k
) = |v|2 + kR

(
v√
k

)
.

Under Bochner coordinates we have R(z) = O(|z|4). We fix 0 < ε < 1
4 for the

remainder of the paper, and we further stipulate that v will be chosen from within

B(k
1
4−ε) to ensure that kR

(
v√
k

)
= O(k−ε). Consequently, for large k, one may

compute in the setting of a perturbed Bargmann–Fock space. In particular, this implies
that for k sufficiently large

1

2
|| f ||L2(B(k−1/4−ε), k|z|2) ≤ || f ||L2(B(k−1/4−ε), kϕ(z)) ≤ 2|| f ||L2(B(k−1/4−ε), k|z|2).

(3.1)
To develop this idea effectively, we choose some cutoff function χ ∈ C∞

c (Cn) satis-
fying

χ(x) =
{
1 if |x | ≤ 1

2 ,

0 if |x | ≥ 1,
(3.2)

and set χk(x) := χ(k
1
4+εx). We then incorporate χk into the integral in the local

reproducing property of Proposition 3.1. Note that

supp(dχk(
z√
k
)) ⊂ {z | 1

2k
1
4−ε ≤ |z| ≤ k

1
4−ε}.

So for |u| ≤ 1 and v ∈ supp(dχk(
v√
k
)), their distance has a lower bound |u − v| ≥

1
4k

1
4−ε, which is crucial in obtaining an estimate for the exponential decay outside

the near-diagonal neighborhood. We then analyze the orders of the remainders of the
truncations of the locally defined pieces to show that their contribution to the local
reproducing property is of negligible order.

3.2 Local Reproducing Kernel

In this section we show that local reproducing kernel with the coefficients chosen in
Sect. 2 actually satisfies the local reproducing property up to a small error, and give
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2610 H. Hezari et al.

measure of such error. Before doing so, we introduce some notation. Given a domain
U ⊂ C

n and f ∈ C∞(U ) we set

fM (x) :=
∑

| j |≤M

D j f (0)

j ! x j .

In particular, for x ∈ C, (
ex
)
M =

M∑
j=0

x j

j ! .

We will also use this notation for f = R with M = 2N + 5, and f = � with
M = 2N + 1.

Proposition 3.1 (Local reproducing property) Let f ∈ H0(B), and c j be the quanti-
ties as found in Proposition 2.1. Then for u ∈ B,

f

(
u√
k

)
=
〈
χk

(
v√
k

)
f

(
v√
k

)
, eū·v
⎛
⎝ N∑

j

c j (v, ū)√
k j

⎞
⎠
〉

L2
(
B(

√
k),kϕk (v)

)

+ O
(
kn− N+1

2

)
‖ f ‖L2(B,kϕ).

To prepare to verify Proposition 3.1, we require a series of estimates on the Taylor
series remainders of the exponential term and the volume form. We also show that the
integral outside of the support of χk is rapidly decaying.

Lemma 3.2 (Remainder of the exponential term)Let M = [ N+1
2ε ]+1. Then for N ≥ 0

and any f ∈ H0(B),

∫
B(

√
k)

χk

(
v√
k

)
f
(

v√
k

)
euv̄−|v|2

⎛
⎝ N∑

j=0

c j (u,v)√
k j

⎞
⎠

(
e
−kR
(

u√
k

)
−
(
e
−kR2N+5

(
u√
k

))
M

)
�
(

v√
k

)
dV

= ‖ f ‖L2(B,kϕ)O

(
kn− N+1

2

)
.

Lemma 3.3 (Remainder of determinant) Let M = [ N+1
2ε ] + 1. Then∣∣∣∣∣∣

∫
B(

√
k)

χk

(
v√
k

)
f
(

v√
k

)
euv̄−|v|2

⎛
⎝ N∑

j=0

c j (u,v)√
k j

⎞
⎠

×
⎛
⎝e−kR2N+5

(
v√
k

)⎞
⎠

M

(� − �2N+1)
(

v√
k

)
dV

∣∣∣∣∣∣
= ‖ f ‖L2(B,kϕ)O

(
kn− N+1

2

)
.

(3.3)
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Lemma 3.4 (Estimate outside the ball) Let F be a holomorphic polynomial. Then the
following estimate holds:

∫
Cn

(
1 − χk

(
v√
k

))
F

(
v√
k

)
euv̄−|v|2

⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v)am(v, v̄)√
kt

⎞
⎠ dV

≤ CNk
n‖F‖L2(B,kϕ)e

− 1
32 k

1
2−2ε

.

Given the results above, we prove Proposition 3.1.

Proof of Proposition 3.1 By Proposition 2.1,

F

(
u√
k

)
=
∫
Cn

F

(
v√
k

)
eu·v̄−|v|2

⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v̄)am(v, v̄)√
kt

⎞
⎠ dV,

for all N ≥ 0 and all holomorphic polynomials F . We then split the above to two
pieces.

F

(
u√
k

)
=
∫
Cn

(
1−χk

(
v√
k

))
F

(
v√
k

)
eu·v̄−|v|2

⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v̄)am(v, v̄)√
kt

⎞
⎠ dV

+
∫
Cn

χk

(
v√
k

)
F

(
v√
k

)
eu·v̄−|v|2

⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v̄)am(v, v̄)√
kt

⎞
⎠ dV .

The first integral is bounded above by CNkn‖ f ‖L2(B,kϕ)e
− 1

32 k
1
2−ε

from Lemma 3.4.

For the second integral, we note that since M = [ N+1
2ε ] + 1 > N/4, and |u| < 1, we

have

∣∣∣∣∣∣

⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v̄)am(v, v̄)√
kt

⎞
⎠−
⎛
⎝ N∑

j=0

c j (u, v̄)√
k j

⎞
⎠
(
e
−kR2N+5

(
v√
k

))
M

�2N+1

∣∣∣∣∣∣
≤ CNk

− N+1
2 |v|4(M+N+1).

Then by applying this to the second integral, and using theCauchy–Schwarz inequality
we get

CNk
− N+1

2

∣∣∣∣
∫
Cn

χk

(
v√
k

)
F
(

v√
k

)
|v|4(M+N+1)euv−|v|2dV

∣∣∣∣

≤ CNk
− N+1

2

(∫
Cn

χk

(
v√
k

) ∣∣∣F
(

v√
k

)∣∣∣2 e−|v|2dV
) 1

2
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2612 H. Hezari et al.

⎛
⎝
∫
Cn

χk

(
v√
k

) ∣∣∣∣∣|v|4(M+N+1)euv̄−|v|2
2

∣∣∣∣∣
2

dV

⎞
⎠

1
2

≤ CN‖F‖L2(B,kϕ)k
n− N+1

2 .

Hence we obtain the estimate,

F

(
u√
k

)
=
∫
Cn

χk

(
v√
k

)
F

(
v√
k

)
eu·v̄−|v|2

⎛
⎝ N∑

j=0

c j (u, v̄)√
k

⎞
⎠
(
e
−kR2N+5

(
v√
k

))
M

�2N+1dV

+ O(kn− N+1
2 )‖F‖L2(B,kϕ).

Now by applying Lemmas 3.3 and 3.2, we have

∫
Cn

χk

(
v√
k

)
F
(

v√
k

)
euv̄−|v|2

⎛
⎝ N∑

j=0

c j (u,v)√
k j

⎞
⎠
⎛
⎝e−kR2N+5

(
v√
k

)⎞
⎠

M

�2N+1

(
v√
k

)
dV

=
〈
χk

(
v√
k

)
F
(

v√
k

)
, eū·v
⎛
⎝ N∑

j

c j (ū,v)√
k j

⎞
⎠
〉

L2(B(
√
k),kϕ( v√

k
))

+ ‖F‖L2(B,kϕ)O
(
kn− N+1

2

)
.

We can extend to arbitrary f ∈ H0(B) by putting F = fL , letting L → ∞, and using
the uniform convergence of fL . The result follows. ��

We end this section with the proofs of Lemmas 3.2–3.4.

Proof of Lemma 3.2 First note that since |v| ≤ k
1
4−ε we have

kR

(
v√
k

)
= O(k−ε).

We regroup the quantity

e−kR − e−kR2N+5 = e−kR
(
1 − ek(R−R2N+5)

)
. (3.4)
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By Taylor expansion

k

∣∣∣∣(R − R2N+5)

(
v√
k

)∣∣∣∣ ≤ k sup
|α|=2N+6

|ξ |≤ |v|√
k

∣∣∣∣D
αR(ξ)

(α)!
∣∣∣∣
∣∣∣∣ v√

k

∣∣∣∣
α

≤ CNk

( |v|√
k

)2N+6

≤ CNk
− N+1

2 .

Applying the above to (3.4), we have

∣∣∣∣e−kR
(

v√
k

)
− e

−kR2N+5

(
v√
k

)∣∣∣∣ ≤ CNk
− N+1

2 . (3.5)

Next we consider the difference

∣∣∣∣e−kR2N+5

(
v√
k

)
−
(
e
−kR2N+5

(
v√
k

))
M

∣∣∣∣ , (3.6)

where M is a fixed constant such that M ≥ N+1
2ε .

By

(
e
−kR2N+5

(
v√
k

))
M
we mean to truncate as

M∑
j=0

1

j !
(

−kR2N+5

(
v√
k

)) j
.

Hence we have an estimate

∣∣∣∣e−kR2N+5

(
v√
k

)
−
(
e
−kR2N+5

(
v√
k

))
M

∣∣∣∣ ≤ sup
|x |≤|−kR2N+5

(
v√
k

)
|

|x |M+1

(M + 1)!

≤ Ck−εM+1

≤ Ck− N+1
2 .

Combining (3.5) and (3.6), we have

∣∣∣∣e−kR
(

v√
k

)
−
(
e
−kR2N+5

(
v√
k

))
M

∣∣∣∣ ≤ CNk
− N+1

2 .

Applying our estimate directly to the integral,
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∣∣∣∣∣∣
∫
Cn

χk

(
v√
k

)
f
(

v√
k

)
euv̄−|v|2

⎛
⎝ N∑

j=0

c j (u,v)√
k j

⎞
⎠
(
e
−kR
(

v√
k

)
−
(
e
−kR2N+5

(
v√
k

))
M

)
�
(

v√
k

)
dV

∣∣∣∣∣∣

≤ CNk
− N+1

2

∫
Cn

∣∣∣∣∣∣χk

(
v√
k

)
f
(

v√
k

)
e− |v|2

2

⎛
⎝ N∑

j=0

c j (u,v)√
k j

⎞
⎠�
(

v√
k

)
euv̄− |v|2

2

∣∣∣∣∣∣ dV

≤ CNk
− N+1

2

(∫
Cn

χk

(
v√
k

) ∣∣∣ f
(

v√
k

)∣∣∣2 e−|v|2dV
) 1

2

⎛
⎜⎝
∫
Cn

χk

(
v√
k

) ∣∣∣∣∣∣

⎛
⎝ N∑

j=0

c j (u,v)√
k j

⎞
⎠�
(

v√
k

)
euv̄− |v|2

2

∣∣∣∣∣∣
2

dV

⎞
⎟⎠

1
2

≤ CNk
− N+1

2

(∫
Cn

χk

(
v√
k

) ∣∣∣ f
(

v√
k

)∣∣∣2 e−kϕ
(

v√
k

)
dV

) 1
2

⎛
⎜⎝
∫
Cn

χk

(
v√
k

) ∣∣∣∣∣∣

⎛
⎝ N∑

j=0

c j (u,v)√
k j

⎞
⎠�
(

v√
k

)
euv̄− |v|2

2

∣∣∣∣∣∣
2

dV

⎞
⎟⎠

1
2

≤ CN‖ f ‖L2(B,kϕ)k
n− N+1

2 .

The result follows. ��

Proof of Lemma 3.3 We first observe the following estimate

∣∣∣∣(� − �2N+1)

(
v√
k

)∣∣∣∣ ≤ sup
|α|=2N+2

|ξ |≤
∣∣∣ v√

k

∣∣∣

∣∣∣∣D
α�(ξ)

α!
∣∣∣∣
∣∣∣∣ v√

k

∣∣∣∣
2N+2

≤ CNk
− N+1

2 .

Using the above estimate with a similar manipulation as Lemma 3.2 we conclude
(3.3). ��

Proof of Lemma 3.4 Up this point the estimate (3.1) has been crucial in all of our
estimates. However when χk is replaced by 1 − χk , the integrand is not supported
in B(k1/4−ε), and hence (3.1) is not correct anymore. However, an application of
integration by parts resolves this issue as we perform below.

First note that since |u| ≤ 1 and |v| ≥ 1
2k

1
4−ε, we have |u − v| ≥ 1

4k
1
4−ε. Next we

use the identity

∂

(∑
i

ev̄(u−v) 1

ui − vi
d V̂

i

)
= −nev̄(u−v)dV,

where dV̂
i :=
(√−1

2π

)n
dv1 ∧ dv1 ∧ · · · ∧ dvi ∧ d̂vi ∧ · · · ∧ dvn ∧ dvn . Integrating

by parts, we have
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∫
Cn

(
1 − χk

(
v√
k

))
F

(
v√
k

)
ev̄(u−v)

⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v)am(v, v̄)√
kt

⎞
⎠ dV

= −1

n

∫
Cn

(
1 − χk

(
v√
k

))
F

(
v√
k

)⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v)am(v, v̄)√
kt

⎞
⎠

∂

(∑
i

ev̄(u−v) 1

ui − vi
d V̂

i

)

= −1

n

∫
Cn

F

(
v√
k

)∑
i

∂ i

⎛
⎝
(
1 − χk

(
v√
k

))⎛
⎝ N∑

t=0

∑
m+ j=t

c j (u, v)am(v, v̄)√
kt

⎞
⎠
⎞
⎠

ev̄(u−v) 1

ui − vi
dV .

Iterating the above integration by parts 2N times we obtain

= (−1)2N+1

n2N+1

∫
Cn

F

(
v√
k

) ∑
I=(i1,...,i2N+1)

|I |=2N+1

∂ Ī

⎛
⎝
(
1 − χk

(
v√
k

)) N∑
t=0

∑
m+ j=t

c j (u, v)am(v, v̄)√
kt

⎞
⎠ ev̄(u−v)

(u − v)I
dV .

Since the degrees of am and c j are 2m and 2 j respectively, always one differentiation

is applied to 1 − χk . Therefore, the integrand is supported on the annulus 1
2k

1
4−ε ≤

|v| ≤ k
1
4−ε. The above integral is then bounded above by

(∫
1
2 k

1
4−ε≤|v|≤k

1
4−ε

∣∣∣∣F
(

v√
k

)∣∣∣∣
2

e−|v|2dV
) 1

2

×

⎛
⎜⎜⎜⎝
∫

1
2 k

1
4−ε≤|v|≤k

1
4−ε

∣∣∣∣∣∣∣∣∣

∑
I=(i1,...,i2N+1)

|I |=2N+1

∂ Ī

⎛
⎝
(
1 − χk

(
v√
k

)) N∑
t=0

∑
m+ j=t

c j (u, v)am(v, v̄)√
kt

⎞
⎠ e

|u|2−|u−v|2
2

(u − v)I

∣∣∣∣∣∣
2

dV

⎞
⎟⎠

1
2

≤ CNk
n‖F‖L2(B,kϕ)e

− 1
32 k

1
2−2ε

.

The result follows ��
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4 Local to Global

The norm of K as a section of the bundle L⊗k ⊗ L̄⊗k is the Bergman function B.
Hence in local coordinates

B(x) = |K (x, x)|hk = |K̃ (x, x)|e−kϕ(x),

where K̃ (x, x) is the coefficient function of the Bergman kernel with respect to the
frame e⊗k

L ⊗ ēL⊗k . We also have an extremal characterization of the Bergman function
given by

B(x) = sup
‖s‖L2≤1

|s(x)|2hk , (4.1)

where s ∈ H0(M, L⊗k).

Lemma 4.1 (Uniform upper bound on Bergman function) There exists C dependent
on M, and independent of k and x such that

B(x) ≤ Ckn .

Proof We use the extremal characterization of the Bergman function (4.1). On the
compact manifold M , we fix a finite coordinate cover {U } and also fix a coordinate
{zi }ni=1 in U . For each U , we have a local Kähler potential ϕ(z). We can assume
that U = B(0, 2), and supz∈B(0,2) |D2ϕ(z)| ≤ C , i.e., the second derivatives are
uniformly bounded. Since ϕ is plurisubharmonic, we can assume the volume form

dVg = (
√−1
2π ∂∂̄ϕ)n(z) is equivalent to dVE (z) in B(0, 2).

1 ≥
∫
B(z0,

1√
k
)

|s̃(z)|2e−kϕ(z)dVg

≥ 1

C1

∫
B(z0,

1√
k
)

|s̃(z)|2e−kϕ(z)dVE

≥ 1

C1
exp(− sup

B(0,2)
|D2ϕ|)

∫
B(z0,

1√
k
)

|s̃(z)|2e−kϕ(z0)−kϕz(z0)(z−z0)−kϕz̄(z0)(z−z0)dVE

= 1

C2
e−kϕ(z0)

∫
B(z0,

1√
k
)

|s̃(z)e−kϕz(z0)(z−z0)|2dVE .

Since s̃(z)e−kϕz(z0)(z−z0) is holomorphic, by the mean-value inequality we have

1

C2
e−kϕ(z0)

∫
B(z0,

1√
k
)

|s̃(z)e−kϕz(z0)(z−z0)|2dVE ≥ 1

C3kn
e−kϕ(z0)|s̃(z0)|2.

So we have

e−kϕ(z0)|s̃(z0)|2 ≤ C3k
n,
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where C3 is uniform for any z0 ∈ B(0, 1) and any s ∈ H0(M, Lk). Taking the
supremum over all such s and a standard finite cover argument yields the desired
result. ��

Let K (x, y) = Ky(x) be the global Bergman kernel of H0(M, L⊗k). We view

Ky(x) as a section of Lk ⊗ L
k
y . We shall use K̃ (x, y) for the local representation of

K (x, y) with respect to the frame eL(x)⊗k ⊗ ēL(y)⊗k .

Theorem 4.2 (Local to global) The following equality relates the truncated local
Bergman kernel

K loc
N

(
u√
k
,

v√
k

)
= kneu·v̄

N∑
j=0

c j (u, v)
√
k
j

to the global Berman kernel K̃ .

K̃

(
u√
k
,

v√
k

)
= Kloc

N

(
u√
k
,

v√
k

)
+ O
(
k2n− N+1

2

)
.

Proof Fix u, v ∈ B. We apply the local reproducing property to the global Bergman
kernel f (w) = K̃ u√

k
(w) = K̃ (w, u√

k
)

K̃

(
v√
k
,

u√
k

)
=
〈
χk(w)K̃

(
w,

u√
k

)
, Kloc

N

(
w,

v√
k

)〉
L2(B,kϕ(w))

+O
(
kn− N+1

2

)
‖K̃ u√

k
‖L2(B,kϕ).

By the reproducing property, we obtain from Lemma 4.1,

‖K̃ u√
k
‖2L2(B,kϕ)

≤ ‖K u√
k
‖2L2 = K̃

(
u√
k
,

u√
k

)
= B

(
u√
k

)
ekϕk (u) ≤ Ckn,

where K u√
k
(w) means section with respect to w and local coefficient function with

respect to u. Thus we have

K̃

(
v√
k
,

u√
k

)
=
〈
χk(w)K̃

(
w,

u√
k

)
, Kloc

N

(
w,

v√
k

)〉
L2(B,kϕ(w))

+O
(
k2n− N+1

2

)
.
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We next estimate the difference of the local Bergman kernel with the projection of the
local kernel.

gk,v

(
w√
k

)
:= χk

(
w√
k

)
Kloc

N

(
w√
k
,

v√
k

)

−
〈
χk(x)K̃

(
x,

w√
k

)
, Kloc

N

(
x,

v√
k

)〉
L2(B,kϕ(x))

= χk

(
w√
k

)
Kloc

N

(
w√
k
,

v√
k

)

−
〈
χk(x)K

loc
N

(
x,

v√
k

)
, K̃

(
x,

w√
k

)〉
L2(B,kϕ(x))

.

We can regard gk,v as a global section of L⊗k because of the cut-off function χk . Since

〈
χk K

loc
N , v√

k
, K u√

k

〉
L2

= PH0

(
χk K

loc
N , v√

k

)
,

where PH0 is the Bergman projection and gk,v is the L2-minimal solution to

∂gk,v = ∂

(
χk K

loc
N , v√

k

)
.

Now we estimate ∂(χk K loc
N ,

v√
k

).

∂

(
χk K

loc
N , v√

k

)∣∣∣∣
w√
k

=
(

∂ (χk) K
loc
N , v√

k
+ χk∂

(
Kloc

N ,
v√
k

))∣∣∣∣∣
w√
k

= ∂ (χk) K
loc
N ,

v√
k

∣∣∣∣∣
w√
k

.

We note that ∂

(
Kloc

N ,
v√
k

)
= 0 because Kloc

N is holomorphic. The term ∂ (χk) on

the right-hand side ensures |w − v| ≥ 1
4k

1
4−ε, and |w| ≤ k

1
4−ε. Furthermore, since

Kloc
N , v√

k
( w√

k
) = O
(
ewv̄|vw|2N ), and because

|ewv̄|2e−|w|2 = e2Rewv̄−|w|2 = e−|w−v|2+|v|2 ≤ Ce− 1
16 k

1
2−2ε

,

we obtain ∥∥∥∥∂(χk)K
loc
N , v√

k

∥∥∥∥L2(M,L⊗k )

≤ Ce− 1
32 k

1
2−2ε

.
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So by the Hörmander ∂-estimate, the following inequality holds uniformly for v ∈ B,

‖gk,v‖L2(M,L⊗k ) ≤ Ce− 1
32 k

1
2−2ε

. (4.2)

By the same argument as in the Lemma 4.1 above, for all u ∈ B we obtain the uniform
estimate ∣∣∣gk,v

(
u√
k

)∣∣∣ ≤ Ce− 1
64 k

1
2−2ε

.

This concludes the estimate
∣∣∣∣Kloc

N

(
u√
k
,

v√
k

)
− K

(
u√
k
,

v√
k

)∣∣∣∣ ≤ Ck2n− N+1
2 ,

uniformly for all u, v ∈ B. ��

5 Proof of Proposition 2.1

As we said before, at the heart of the proof of Proposition 2.1 we require Lemma 8.4,
namely the following identity:

∫
Cn

v̄ pvqeu·v̄−|v|2dV =
{
0 if p > q,

q!
(q−p)!u

q−p if p ≤ q.

To prove Proposition 2.1, it is sufficient to consider arbitrary degree l monomials in
u. By Lemma 8.4, the proof of our proposition is reduced to

ul =
∫
Cn

vl eu·v̄−|v|2
N∑
t=0

∑
j+m=t

(∑
p,q

∑
r,s

cp,qj ar,sm√
kt

u p v̄qvrvs

)
dV

=
N∑
t=0

∑
m+ j=t

∑
q+s≤l+r

∑
p

cp,qj ar,sm√
kt

u p+l+r−q−s (l + r)!
(l + r − q − s)! .

(5.1)

Note that in the above summation, l is fixed.
We can immediately determine the c0 coefficients, as seen in the following lemma.

Lemma 5.1 For multiindices p, q ∈ Z
n+ the following property holds

cp,q0 =
{
1 if pi = qi = 0 for all i,

0 otherwise.
(5.2)

Proof The proof proceeds by induction on the length of the multiindex q. First, we
consider |q| = 0. Then taking (5.1) for l = (0, . . . , 0) and comparing the coefficient
of k coefficient yields
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1 =
∑
p

q+s≤r

cp,q0 ar,s0 u p+r−q−s r !
(r − q − s)! .

By the vanishing of ar,s0 from Proposition 6.2, we have

1 =
∑
p

cp,00 u p.

Immediately we compare the coefficients of u and conclude result (5.2) for this case.
Now we assume the induction hypothesis holds for |q| ≤ λ − 1 and consider the

case |q| = λ, and take |l| = λ. Then applying the induction hypothesis to (5.1) and
parsing apart the right-hand summation yields

ul =
∑
p

∑
q≤l

u pcp,q0
l!

(l − q)!u
l−q

=
∑
p

∑
|q|=λ

q≤l

u pcp,q0
l!

(l − q)!u
l−q +
∑
p

∑
q≤l

|q|≤λ−1

u pcp,q0
l!

(l − q)!u
l−q .

Note in particular that the requirements in the first right side term that q ≤ l and
|q| = λ immediately imply that q = l. Additionally, by the induction hypothesis, the
second right side term reduces to simply ul . Subtracting this from both sides yields

0 =
∑
p

u pcp,l0 .

The coefficients vanish accordingly and we conclude (5.2). The desired result follows.
��

Proof of Proposition 2.1 By (5.1), from comparing the coefficients of k, we get

∑
m+ j=t

∑
s+q≤l+r

∑
p

cp,qj ar,sm u p+r+l−q−s (l + r)!
(l + r − q − s)! =

{
ul t = 0,

0 t ≥ 1.
(5.3)

In order to determine the coefficients cp,qj , we induct on j . The base case j = 0
is demonstrated by Lemma 5.1. Now assume the induction hypothesis is satisfied for
j ≤ τ − 1, which implies that the coefficients cp,qj have been determined for all
multiindices p and q and for all such values of j .

Take (5.3) for t = τ ,

τ∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ− j u
p+r+l−q−s (l + r)!

(l + r − q − s)! = 0.
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By moving all the terms with j ≤ τ − 1 to the other side, we have

∑
s+q≤l+r

∑
p

cp,qτ ar,s0 u p+r+l−q−s (l + r)!
(l + r − q − s)!

= −
τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ− j u
p+r+l−q−s (l + r)!

(l + r − q − s)! .

Since we know ar,s0 all vanish except that a0,00 = 1 (cf. Lemma 6.2),

∑
q≤l

∑
p

cp,qτ u p+l−q l!
(l−q)! =−

τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ− j u
p+r+l−q−s (l+r)!

(l+r−q−s)! .
(5.4)

We consider various lengths of l to determine the values of the coefficients. When
|l| = 0, (5.4) reduces to

∑
p

cp,0τ u p = −
τ−1∑
j=0

∑
s+q≤r

∑
p

cp,qj ar,sτ− j u
p+r−q−s r !

(r − q − s)! . (5.5)

Since the values of ar,sm are determined (cf. Lemma 6.2) and cp,qj are known due to the

inductive hypothesis for j ≤ τ − 1, we obtain all cp,0τ by comparing the coefficients
of u in (5.5). We begin a subinduction argument on the values of |q| such that cp,qτ is
known for any |q| ≤ λ − 1. The case λ = 0 is determined via our analysis of (5.5)
discussed above. Consider multiindices l such that |l| = λ within the (5.6). As in
the Lemma 5.1, we decompose the left-hand summation of (5.4) and rearrange the
equality to obtain

∑
p

cp,lτ u p = −
τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ− j u
p+r+l−q−s (l + r)!

(l + r − q − s)!

−
∑
p

∑
q≤l

|q|≤λ−1

cp,qτ u p+l−q l!
(l − q)! .

(5.6)

Due to the induction hypothesis on τ , the first quantity of the right-hand side is com-
pletely determined. Furthermore, by comparing the coefficients on u p we can solve
for cp,lτ . This concludes the induction on |q| which implies that cp,qτ are completely
determined, and thus the induction on τ is also completed. The result follows. ��

Next we prove the finiteness of the expansion of the volume form.

Definition 5.2 (Weight of coefficient) Let A(z) =∑ j
a j (z)√

k j
be a series such that each

coefficient a j (z) is a polynomial. Define the weight w(a j (z)) of each coefficient as
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w(a j (z)) = deg(a j (z)) − j,

and the weight of a series w(A(z)) = sup
j

w(a j (z)).

Lemma 5.3 (Additivity of weight) For series A(z) and B(z), we have

w(A(z) + B(z)) = sup{w(A(z)), w(B(z))},
w(A(z)B(z)) = w(A(z)) + w(B(z)).

Proof The first equality is clear. For the second, by direct computation,

w(A(z)B(z)) = w

⎛
⎝
⎛
⎝∑

j

a j (z)

⎞
⎠
(∑

k

bk(z)

)⎞
⎠

= w

⎛
⎝∑

t

∑
j+k=t

a j (z)bk(z)

⎞
⎠

= sup
t

w

⎛
⎝ ∑

j+k=t

a j (z)bk(z)

⎞
⎠

= sup
t

deg

⎛
⎝ ∑

j+k=t

a j (z)bk(z)

⎞
⎠− t

= sup
j

deg(a j (z)) − j + sup
k

deg(bk(z)) − k = w(A(z)) + w(B(z)).

The results follow. ��

We now consider the weight of e
kR
(

v√
k

)
, as a series in powers of

√
k. Since R

(
v√
k

)
is obtained from Taylor expansion, the degree of the polynomial coefficient matches
with the degree of

√
k, so w(R( v√

k
)) = 0. Using the additivity of the weight, we have

w

(
kR

(
v√
k

))
= 2.

Then we have

e
kR
(

v√
k

)
=
∑
m

1

m!
(
kR

(
v√
k

))m
.

Computing the weight of each term, we obtain

w

((
kR

(
v√
k

))m)
= 2m.

Hence we obtain the following lemma.
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Lemma 5.4 Given m ∈ Z+ and multiindices r, s ∈ Z
n+ such that |r + s| > 2m, then

ar,sm = 0.

Next we will show that the coefficients cp,qj and ar,sm satisfy a parity condition. We
begin by establishing the following property of bivariate power series.

Definition 5.5 (Parity property of power series)We say the coefficients of the bivariate
power series

B(x, y) :=
∑
m,p,q

B p,q
m√
km

x p yq ,

has the parity property if given p, q ∈ Z
n+ with |p| + |q| �≡2 m, then B p,q

m = 0.

By demonstrating that this property is preserved under standard algebraic manipu-
lations, we will conclude the vanishing of particular coefficients a p,q

j and cp,qj of (2.1)
and (2.2), respectively. This is key in demonstrating the finiteness and bounds on the
degrees of each c j .

Lemma 5.6 If A and B are bivariate power series with the parity property, then so
are A + B and AB.

Proof The additive closure is immediate. For the multiplication, we have

A(x, y)B(x, y) =
∞∑

m=0

1√
km

m∑
n=0

∑
p,q,r,s

Ap,q
n Br,s

m−nx
p+r yq+s .

The term is nonzero when |p| + |q| ≡2 n and |r | + |s| ≡2 m − n, that is, when

|p| + |r | + |q| + |s| ≡2 m.

The result follows. ��
Lemma 5.7 The bivariate expansion of e−kR� has the parity property.

Proof Consider the expansion

e
−kR
(

v√
k

)
=
∑
n

(
(−1)n(

√
k)2
∑ 1√

km
Rp,q
m v pvq

)n

= (−1)n(
√
k)2n
∑
n

(∑ 1√
km

Rp,q
m v pvq

)n
.

The factors of k−1/2 come from evaluating the expansion of the exponential at ( v√
k
),

the Rp,q
m terms have the parity property. Since the parity property is closed under

addition and multiplication by Lemma 5.6, and multiplication by k2n preserves the
parity property, the entire power series admits the property. Furthermore since �( v√

k
)

also has the parity property, the product also has the parity property. The result follows.
��
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Lemma 5.8 For all m ∈ N, given p, q ∈ Z
n+ such that |p| + |q| �≡2 m, we have

cp,qm = 0.

Proof The proof proceeds by induction on m satisfying the lemma statement. First,
the case when m = 0 is an immediate consequence of (5.2). Next assume that the
parity property holds for m ≤ t − 1 and we do a sub induction on |q|. From (5.5) we
obtain

−
∑
α

cα,0
t uα =

t−1∑
j=0

∑
p

∑
r≥q+s

cp,qj ar,st− j u
p+r−q−s r !

(r − q − s)! .

On the right-hand side, the coefficients are nonzero only when |p| + |q| ≡2 j and
|r | + |s| ≡2 t − j . Combining these two equalities yields

|p| + |q| + |r | + |s| ≡2 t,

which implies that cα,0
t = 0 for α �≡2 t .

Now we assume the induction hypothesis holds for |q| ≤ λ − 1. For |q| = λ, we
have from (5.6),

∑
p

cp,lt u p = −
t−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,st− j u
p+r+l−q−s (l + r)!

(l + r − q − s)!

−
∑
p

∑
q≤l

|q|≤λ−1

cp,qt u p+l−q l!
(l − q)! .

On the right-hand side, in the first summation, when |p| + |q| + |r | + |s| �≡2 t , the
terms are zero by the induction on j , hence the exponent must be

|p| + |r | + |q| + |s| + |l| ≡2 t + |l|.

In the second summation, when |p| + |q| �≡2 t , the terms are zero by the induction on
|q|, hence the exponent must be

|p| + |q| + |l| ≡2 t + |l|.

Then comparing the exponent on both sides, we get on the left-hand side,

|p| ≡2 t + |l|.

Hence
|p| + |l| ≡2 t.

The subinduction on |q| has been proven, therefore we may determine all cp,qt for the
given t . Consequently the induction on t is complete, and the result follows. ��
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We next establish two combinatorial identities in preparation for the proof of The-
orem 5.13.

Lemma 5.9 Given l ∈ Z+, for all s ∈ [1, l] ∩ Z+ the following equality holds

s∑
w=0

(−1)s
(
l

w

)(
l − w

l − s

)
= 0. (5.7)

Proof We assign the terms of (5.7) as polynomial coefficients and rearrange terms
appropriately,

l∑
w=0

w∑
s=0

(−1)s
(
l

w

)(
l − w

l − s

)
xl−s =

l∑
w=0

(
l∑

s=w

(
l − w

l − s

)
xl−s

)(
l

w

)
(−1)s

=
l∑

w=0

(
(x + 1)l−w

)( l
w

)
(−1)w

=
l∑

w=0

(
(x + 1)l−w

(
l

w

)
(−1)w
)

= xl .

The result follows. ��
Corollary 5.10 Given a multiindex l ∈ Z

n+, for all nonzero multiindices s ≤ l the
following equality holds

∑
w≤s

(−1)|w|
(
l

w

)(
l − w

l − s

)
= 0. (5.8)

Proof Taking the left-hand side of 5.10 and decomposing it as a product of binomial
coefficients we obtain

∑
w≤s

(−1)|w|
(
l

w

)(
l − w

l − s

)
=

n∏
i=1

(∑
wi≤si

(−1)wi

(
li
wi

)(
li − wi

li − si

))
.

We observe that since s is nonzero then there is at least one i ∈ [1, n] ∈ Z+ such that
si is nonzero. Applying Lemma 5.9 to this index within the product yields the desired
result. ��
Lemma 5.11 For all η ∈ [1, l] ∩ Z+, and r ∈ [0, η − 1] ∩ Z+,

η∑
w=0

(−1)w
(
l

w

)(
r + l − w

η − w

)
= 0. (5.9)
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Proof To verify the lemma we apply the following combinatorial identity. For 0 ≤
w ≤ 2, we have

(
r+l−w

η−w

)
=
((

l−w

η−w

)(
r

0

)
+
(

l−w

η−w−1

)(
r

1

)
+ · · · +

(
η + 1 − w

0

)(
r

η−w

))
.

We expand left-hand side of (5.10) by the above identity and obtain

η∑
w=0

(−1)w
(
l

w

) η−w∑
v=0

(
l−w

η−w−v

)(
r

v

)
=

η∑
v=0

(
η−v∑
w=0

(−1)w
(
l

w

)(
l−w

η−w−v

))

L

(
r

v

)
.

It suffices to prove that the labeled quantity L = 0, that is

η−v∑
w=0

(−1)w
(
l

w

)(
l − w

η − j − v

)
= 0.

This is equivalent to demonstrating that for any η ∈ Z+ such that 1 ≤ η ≤ l + 1,

rη =
η∑

w=0

(−1)w
(
l

w

)(
l − w

η − w

)
= 0. (5.10)

We again embed (5.10) as coefficients of a polynomial in x and with careful manipu-
lation obtain,

l∑
η=0

rηx
η =

l∑
η=0

η∑
w=0

(−1)w
(
l

w

)(
l − w

η − w

)
xη

=
l∑

w=0

(
l∑

η=w

(
l − w

η − w

)
xη−w

)(
l

w

)
(−x)w

=
l∑

w=0

(1 + x)l−w

(
l

w

)
(−x)w

= 1.

The result follows. ��
Corollary 5.12 For all multiindices η, r ∈ Z

n+ with r < η,

∑
w≤η

(−1)|w|+1
(
l

w

)(
r + l − w

η − w

)
= 0. (5.11)

Proof Taking the left-hand side of 5.12 and decomposing it as a product of binomial
coefficients we obtain
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∑
w≤η

(−1)|w|+1
(
l

w

)(
r + l − w

η − w

)
= −

n∏
i=1

( ∑
wi≤ηi

(−1)wi

(
li
wi

)(
ri + li − wi

ηi − wi

))
.

We observe that since s is nonzero then there is at least one i ∈ [1, n] ∈ Z+ such
that ri < ηi . Applying Lemma 5.11 to this index within the product yields the desired
result. ��
Theorem 5.13 Given m ∈ Z+ and multiindices p, q ∈ Z

n+ such that |p + q| > 2m,
then cp,qm = 0.

Proof Recall the identity (5.4) established in Lemma 2.1, we have

∑
q≤l

∑
p

cp,qτ u p+l−q l!
(l−q)! =−

τ−1∑
j=0

∑
s+q≤l+r

∑
p

cp,qj ar,sτ− j u
p+r+l−q−s (l+r)!

(l+r−q−s)! .
(5.12)

With the theorem statement as the induction hypothesis, for each fixed τ ∈ N, we
induct on appropriate values of m. For m = 0 this is true by (5.2). Next assume the
hypothesis holds when m ≤ τ − 1. Then we consider the case m = τ . Define the
quantities (given by the left- and right-hand sides of (5.12) respectively),

Pl :=
∑
q≤l

∑
p

cp,qτ u p+l−q l!
(l − q)! , (5.13)

and

Ql := −
∑
p

∑
r+l≥q+s

τ−1∑
j=0

cp,qj ar,sτ− j u
p+r+l−q−s (r + l)!

(r + l − q − s)! . (5.14)

Then we have that by (5.12) that Pl = Ql for all multiindices l ∈ Z
n+. We prove the

identity cp,qm = 0 by embedding the two families of coefficients {Pw}w≤l and {Qw}w≤l

into a polynomial. Set, for B ∈ {P,Q},

�l(B) :=
∑
w≤l

(−1)|w|
(
l

w

)
uwBl−w. (5.15)

First we compute �l(P) by inserting (5.14) into (5.15), carefully rearranging terms
with respect to powers of u:

�l(P) =
∑
w≤l

(−1)|w|
(
l

w

)
uwPl−w

=
∑
w≤l

(−1)|w|∑
p

∑
q≤l−w

(
l

w

)
cp,qτ ul+p−q (l − w)!

(l − w − q)!
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=
∑
p

∑
w≤l

(−1)|w|
⎛
⎝ ∑

w≤s≤l

c p,(l−s)
τ u p+s

(
l

w

)
(l − w)!
(s − w)!

⎞
⎠

=
∑
p

∑
s≤l

c p,(l−s)
τ u p+s

(∑
w≤s

(−1)|w|
(
l

w

)
(l − w)!
(s − w)!

)
.

Note the substitution used to obtain the second to last line is through the identification
s = l − q, and then interchanging the order of summation yields the final line. We
decompose the above summation into two pieces to conclude that

�l(P) =
∑
p

cp,lτ u pl! +
∑
p

∑
0 �=s≤l

c p,(l−s)
τ u p+s

(∑
w≤s

(−1)|w|
(
l

w

)
(l − w)!
(s − w)!

)
.

Applying Corollary 5.10, we have that the quantity above reduces to simply

�l(P) =
∑
p

cp,lτ u pl!. (5.16)

We next compute �l(Q). We collect up terms with respect to the powers of u,

�l(Q) =
∑
w≤l

(−1)|w|
(
l

w

)
uwQl−w

= −
∑
w≤l

(−1)|w|
(
l

w

)
uw
∑
p

∑
r+l≥q+s+w

τ−1∑
j=0

cp,qj ar,sτ− j u
p+r+l−w−q−s

(r + l − w)!
(r + l − w − q − s)!

=
τ−1∑
j=0

∑
w≤l

∑
p

∑
r+l≥q+s+w

(−1)|w|+1
(
l

w

)
cp,qj ar,sτ− j u

p+r+l−q−s

(r + l − w)!
(r + l − w − q − s)!

=
τ−1∑
j=0

r+l∑
q+s=r

∑
p

∑
w≤r+l−q−s

(−1)|w|+1
(
l

w

)
cp,qj ar,sτ− j u

p+r+l−q−s

(r + l − w)!
(r + l − w − q − s)! .

(5.17)

For simplicity, set η := r + l − q − s and allow it to range 0 ≤ η ≤ l. Updating the
index of (5.17) we obtain
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�l(Q) =
τ−1∑
j=0

∑
p

r+l∑
q+s=r

∑
w≤η

(−1)|w|+1
(
l

w

)
cp,qj ar,sτ− j u

p+η (r + l − w)!
(η − w)!

=
τ−1∑
j=0

∑
p

r+l∑
q+s=r

cp,qj ar,sτ− j u
p+η
∑
w≤η

(−1)|w|+1
(
l

w

)
(r + l − w)!

(η − w)! .

(5.18)

As a result of Corollary 5.12 we then only need to consider r ≥ η, otherwise the term
vanishes. As a result of the induction hypothesis combined with the fact that ar,sj = 0
when r + s > 2 j (cf. Remark 6.2) we apply these facts to �l(Q),

2τ ≥ |p + q + r + s| = |p + 2r + l − η|.

Manipulating the above expression yields

|p + η| ≤ 2τ − 2|r | − |l| + 2|η| ≤ 2τ − 2|(r − η)| − |l| ≤ 2τ − |l|.

Combining this fact with (5.18) we conclude

deg�l(Q) ≤ 2τ − |l|.

Recall that since Pl = Ql for all l by (5.12), so that �l(P) = �l(Q). Noting that as
a result of (5.16), we have that, the index p must satisfy

|p| ≤ deg�l(Q) ≤ 2τ − |l|,

therefore if 2τ < |p| + |l|, then cp,lτ = 0, demonstrating the desired induction step.
The result follows. ��

6 Computation of the Coefficients

In this section we explicitly compute the coefficients c1 and c2 of Kloc under Bochner
coordinates (the coefficient c0 was computed in Lemma 5.1.

To compute c1 and c2 we require preliminary terms of the Kähler potential as well
as the coefficients ar,sm .

Proposition 6.1 (Expansion of Kähler potential)We have the following series expan-
sion of the potential ϕ under Bochner coordinates is given by

ϕ(z) = |z|2 − Rmi jkl(0)

4
zi zk z j zl + O(|z|5)

= |z|2 + R(z, z̄).
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Lemma 6.2 (Properties of e−kR� expansion) The expansion up to 1
k for
∑

m∑
p,q

a p,q
m v pvq√

km
is

e
−kR
(

v√
k

)
�
(

v√
k

)
= 1 − 1

k

(
Rickl v

kvl − 1
4 Rmi jkl(0)v

ivkv jvl
)

,

where the numbers a p,q
j for j = 0, 1, 2 are given by

a p,q
0 =
{
1 if |p| = |q| = j = 0

0 otherwise,

a p,q
1 = 0 for all p, q,

and lastly

a p,q
2 =

⎧⎪⎨
⎪⎩

−∑k,l Rickl̄ if |p| = |q| = 1
1
4

∑
k,l Rici j̄ kl̄(0) if |p| = |q| = 2

0 otherwise.

Proof We expand each quantity of the product on the left-hand side of (6.2). First, for
the exponential term we have

e
−kR
(

v√
k

)
= 1 + Rmi jkl(0)

4k
vivkv jvl + o(k− 3

2 ).

And the determinant quantity becomes

�

(
v√
k

)
= det

(
δi j + 1

k

∂4ϕi j

∂zk∂zl
(0)vkvl + O

(
k− 3

2

))

= 1 − 1

k
Rickl v

kvl + O
(
k− 3

2

)
.

The result follows. ��

The computation of c1 is now immediate.

Corollary 6.3 For all p, q ∈ Z+ we have cp,q1 = 0.

Proof By comparing coefficients in (5.1), we see that there is no contribution from a1
for the 1√

k
term, hence

cp,q1√
k
u p+l−q = 0,

for any l. The result follows. ��
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6.1 Computing the Coefficient c2

By applying Eq. (5.1) to f (z) = 1 we obtain c0,02 :

1 =
∫
Cn

eu·v̄−|v|2
(
1 + c0,02

k
+ c(i),( j)

2

k
uiv j + c(i,k),( j,l)

2

k
uiukv jvl

)

(
1 − 1

k

(
Rickl v

kvl − 1
4 Rmi jkl(0)v

ivkv jvl
))

dV .

Collecting the 1
k terms, we obtain

c0,02 =
∫
Cn

Rici j v
iv j euv−|v|2dV − 1

4

∫
Cn

Rmi jkl v
ivkv jvl euv−|v|2dV .

The first integral on the right-hand side is nonzero when i = j . The left side is nonzero
when i = j, k = l and i = l, j = k. We therefore obtain

c0,02 = ρ

2
.

Next to obtain the c(i)( j)
2 coefficient, we apply Eq. (5.1) with f = vα to obtain

∑
i

c(i)(α)
2 ui =

∫
Cn

(
Rickl v

kvαvl − 1

4
Rmi jkl v

ivkvαv jvl
)
eu·v−|v|2dV .

The first term on the right-hand side is nonzero when α = l, hence the only relevant
term after integration is

∫
Cn

Riciα vi |vα|2eu·v−|v|2dV =
∑
i

Riciα u
i .

The second term splits into four cases:

(1) α = j, i = l.
(2) α = j, k = l.
(3) α = l, i = j .
(4) α = l, k = j .

In each case, after integration, we obtain the term

∫
Cn

Rmiα,k,i v
k |vi |2|vα|2eu·v−|v|2dV =

∑
k

Rickα u
k,

and similar computations for the other cases, hence

c(i)(α)
2 = 0.
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Next to obtain the c(ik),( jl)
2 coefficient, we apply Eq. (5.1) with f = vαvβ to obtain

2
∑
i,k

c(ik),( jl)
2 uiuk =

∫
Cn

(
Rickl v

kvαvβvl − 1

4
Rmi jkl v

ivkvαvβv jvl
)
eu·v−|v|2dV .

For the first term on the right-hand side, it is not possible to sum over two variables,
hence is an irrelevant term. The second term has two cases:

(1) j = α, l = β.
(2) l = α, j = β.

Hence we have

c(ik),(αβ)
2 = −1

4
Riαkβ.

Note that the result matches with [21] except for the emergence of non-analytic terms,
however the computations in Lu and Shiffman were done for the lifted Szegő kernel.

7 Higher Order Asymptotic

As the Cm norms depend on the choice of coordinates, we must give some care when
discussing the asymptotic in higher order. The local kernel that we have constructed
is an expansion at one point p ∈ M . We now show the regularity of the local kernel
depending on the point p.

We have shown that at a point p ∈ M

|Kk(p + z, p + w) − Kloc
(N )(p, z, w)| ≤ Cp,N

kN+1−2n , d(z, w) <
1√
k
.

In fact, the Cp,N depends on the local potential, that is,

Cp,N ≤ sup
|α|≤α(N )
x∈Bp (2δ)

|Dαϕ(x)|

We first would like to show that given a point q ∈ Bp(δ), the constant Cp,N is
uniform in that neighborhood, i.e.,

|Kk(q + z, q + w) − Kloc
(N )(q, z, w)| ≤ Cp,N

kN+1−2n , d(z, w) <
1√
k
.

Consider a smooth family of Bochner coordinates. The existence of such a coor-
dinate is given, for example in [18]. Then consider a finite cover of M by Bp(2δ) of
fixed radius. Then for q ∈ Bp(δ), we have

sup
Bq (δ)

|Dαϕ| ≤ C sup
Bp(2δ)

|Dαϕ|,
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where C is independent of q, and the derivatives Dα on the left correspond to the
Bochner coordinates centered atq and the right corresponds to theBochner coordinates
centered at p.

To show the asymptotic for higher order derivatives with respect to the variable p,
we first apply the Bochner–Martinelli formula (which can be found in various texts
such as [12], [13]) to the difference of the local kernel and the global kernel.

We recall that

Lemma 7.1 (Bochner–Martinelli kernel) For w, z ∈ C
n, we define the Bochner–

Martinelli kernel, M(w, z)

M(w, z) = (n − 1)!
(2π

√−1)n
1

|z − w|2n∑
1≤ j≤n

(w j − z j )dw1 ∧ dw1 ∧ · · · ∧ dw j ∧ · · · ∧ dwn ∧ dwn

Suppose that f ∈ C∞(D)where D is a domain inCn with piecewise smooth boundary.
Then for z ∈ D,

f (z) =
∫

∂D
f (w)M(w, z) −

∫
D

∂ f (w) ∧ M(w, z).

Now let p ∈ M and consider Bochner coordinates (z1, . . . , zn) centered at p. The
Bergman kernel and the local kernel are both objects that depend on the base point
and two arguments, i.e.,

Kk(p, z, w) := Kk(p + z, p + w)

By polarizing in the p variable and considering the almost holomorphic extension, we
may view the kernel as

Kk(p, q, z, w) := Kk(p + z, q + w)

Let
fk(p, q, z, w) = Kk(p, q, z, w) − Kloc

(N )(p, q, z, w)

be the difference between the global and local kernel. Note that fk is defined for
q, p + z, q + w ∈ Bp(

1√
k
). From our previous result, we have

| fk(p, p, z, w)| ≤ Cp,N

kN+1−2n , d(z, w) <
1√
k
.

We want to estimate
|∂α

p fk(p, q)|
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for q = p, where we suppress the z, w variable because it it not essential to the
argument. Applying Lemma 7.1 to ∂α

p fk(p, q) with D = Bp(
1√
k
) × Bq(

1√
k
), we

obtain

∂α
p fk(p, q) =

∫
∂D

fk(p
′, q ′)∂α

p M(p′, q ′, p, q)−
∫
D

∂ fk(p
′, q ′)∧∂α

p M(p′, q ′, p, q).

The boundary integral term can be bounded by the L∞-norm of fk multiplied by√
k
−|α|

. By using the fact that fk is an almost holomorphic extension, ∂∂α
p fk in the

second integral is bounded by Oα(|q ′ − p′|∞). When p = q, we have d(p′, q ′) < 1√
k
,

and therefore the second integral is of order O(k−∞).
Now we show the higher order asymptotic with respect to the z, w variable. We

rescale z �→ u√
k
andw �→ v√

k
tomatch the notation as in the statement of our theorem.

Since the local kernel Kloc
N and the global Bergman kernel are holomorphic in u and

anti-holomorphic in v, the derivatives can be bounded by the L∞-norms using Cauchy
estimates. More precisely, let Dx be any first order differential operator of x . By using
the Cauchy estimates on Kloc

N (x, y) and K̃ (x, y) on the ball of radius 1√
k
, we obtain

∣∣∣Dx

(
Kloc

N

(
x, v√

k

)
− K̃
(
x, v√

k

))∣∣∣≤ C
√
k‖Kloc

N

(
·, v√

k

)
− K̃
(
·, v√

k

)
‖L∞(B(k−(1/2)))

= O

(
k2n+ 1

2− N+1
2

)
.

The above holds for x ∈ B( 12k
−1/2), hence we have

∣∣∣Dx

(
Kloc

N

(
u√
k
, v√

k

)
− K̃
(

u√
k
, v√

k

))∣∣∣ = O

(
k2n+ 1

2− N+1
2

)
.

By similar argument, we can obtain the same estimates for the holomorphic variables
ȳ.

Now let Dα be any αth degree differential operator with respect to x or ȳ. By
iterating the previous argument, we obtain the following

|Dα
(
Kloc

N − K
)

| ≤ O

(
k

|α|
2 +2n− N+1

2

)
.

Hence we obtain the smooth asymptotic of the Bergman kernel asymptotics.
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Appendix

In this Appendix we discuss the Bargmann–Fock space F . It is the space of entire
functions that satisfy the weighted square integrability condition:

∫
Cn

| f (z)|2e−|z|2dV < ∞.

The space F is precisely H0(Cn, |z|2), and is thus a closed linear subspace of the
space L2(Cn, |z|2) with inner product given by

〈 f, g〉F :=
∫
Cn

f (z)g(z)e−|z|2dV,

and thus is a Hilbert space. In fact, it is a reproducing kernel Hilbert space on C
n ,

with reproducing kernel
RCn (u, v) := eu·v̄ .

We first show that this kernel has the reproducing property on C and then extend this
argument to Cn .

Lemma 8.1 On C, the Bargmann–Fock kernel is given by

RC(u, v) := euv̄ .

Proof Taking some f ∈ H0(Cn), we consider the inner product against RC. We
convert the resulting integral to polar coordinates and then apply the Cauchy Integral
Formula to obtain

〈 f (v),RC〉F = √−1
∫
C

f (v)euv̄−|v|2 dv ∧ d v̄

2π

= − 1

π

∫ ∞

0

∫ 2π

0
f (u + reiθ )eu(ū+re−iθ )−|u+reiθ |2 r

2
dθdr

= − 1

π

∫ ∞

0
re−r2
∫ 2π

0
f (u + reiθ )e−ūreiθ dθdr

= − f (u)

∫ ∞

0
2re−r2dr

= f (u).

The result follows. ��
Corollary 8.2 On C

n, the Bargmann–Fock kernel is given by

RCn (u, v) := eu·v̄ .
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Proof Let u, v ∈ Z
n+ with u = (u1, . . . , un) and v = (v1, . . . , vn). Observe that

eu·v̄ =
n∏

i=1

eui v̄i−|vi |2 .

To demonstrate the reproducing property, we consider f ∈ H0(Cn) and decompose
the integrand of the resulting inner product againstRCn . Applying Lemma 8.1 to each
dimensional component, we have

〈 f (v),RCn 〉F =
∫
Cn

f (v)eu·v−|v|2dV

=
∫
Cn

f (v1, . . . , vn)

(
n∏
i=i

eui v̄i−|vi |2
)
dV

= f (u).

The result follows. ��
The following lemmas demonstrate the Bargmann–Fock projection of monomials

of different variables.

Lemma 8.3 Given some multiindex m ∈ Z
n+ the following equality holds.

∫
Cn

v̄meu·v̄−|v|2dV = 0.

Proof By manipulation and an application of Dominated Convergence Theorem,

∫
Cn

v̄meu·v̄−|v|2dV =
∫
Cn

∂(m)
u

[
eu·v̄−|v|2] dV

= ∂(m)
u

[∫
Cn

eu·v̄−|v|2dV
]

= 0.

Note that the integral is constant with respect to u, hence the derivative vanishes. The
result follows. ��
Lemma 8.4 The following equality holds, for p, q ∈ Z+ with p ≤ q.

∫
Cn

v̄ pvqeu·v̄−|v|2dV =
{
0 if p > q,

q!
(q−p)!u

q−p if p ≤ q.

Proof Again by manipulation and an application of Dominated Convergence Theo-
rem,
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∫
Cn

v̄ pvqeu.v̄−|v|2dV =
∫
Cn

∂
(p)
u

[
vqeu·v̄−|v|2] dV

= ∂
(p)
u

[∫
Cn

vqeu·v̄−|v|2dV
]

= ∂
(p)
u
[
uq
]
,

therefore ∫
Cn

v̄ pvqeu·v̄−|v|2dV =
{
0 if p > q,

q!
(q−p)!u

q−p if p ≤ q.

Result follows. ��
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30. Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)

123

http://arxiv.org/abs/1309.7088

	Asymptotic Expansion of the Bergman Kernel via Perturbation of the Bargmann--Fock Model
	Abstract
	1 Introduction
	1.1 Outline of the Paper
	1.2 Twisted Bundle Case
	1.3 Notation and Conventions

	2 Local Construction
	2.1 Existence of Coefficients

	3 Remainder Estimates
	3.1 On the Choice of the Shrinking Radius
	3.2 Local Reproducing Kernel

	4 Local to Global
	5 Proof of Proposition 2.1
	6 Computation of the Coefficients
	6.1 Computing the Coefficient c2

	7 Higher Order Asymptotic
	Acknowledgments
	Appendix
	References




